

FEATURES

- 40 A rating at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
- ISO type terminals
- High shock resistance for drop test requirements (2 meters 6.6 feet)
- Low temperature rise - all current carrying material is copper.
- Plug-in and PC board type

SPECIFICATIONS

Contact

(1) Standard type (12V coil voltage)

Arrangement		1 Form A	1 Form C	High contact capacity (1 Form A)
Rating	Nominal switching capacity	40 A 14 V DC	$\begin{aligned} & \text { N.O.: } 40 \text { A } 14 \mathrm{~V} \text { DC } \\ & \text { N.C.: } 30 \text { A } 14 \mathrm{~V} \text { DC } \end{aligned}$	70 A 14 V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 50 A 14 V DC (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Max. carry current (Initial) (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)	N.O.: 40 A 14 V DC	$\begin{aligned} & \text { N.O.: } 40 \text { A } 14 \mathrm{~V} \text { DC } \\ & \text { N.C.: } 30 \text { A } 14 \mathrm{~V} \text { DC } \end{aligned}$	N.O.: 40 A 14 V DC
Initial contact resistance (By voltage drop 6 V DC 1 A)		Max. $15 \mathrm{~m} \Omega$		
Contact material		Silver alloy		
Min. switching capacity*1		1 A 12 V DC (12 V DC), 1 A 24 V DC (24 V DC),		
Expected life	Mechanical (at 120 cpm)	Min. 10^{6}		
	Electrical (at rated load)	Flux-resistant type: Min. 105*1 Sealed type: Min. 5×10^{4}		

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
(2) Standard type (24 V coil voltage)

Arrangement		1 Form A	1 Form C	High contact capacity (1 Form A)
Rating	Nominal switching capacity	20 A 28V DC	$\begin{aligned} & \text { N.O.: } 20 \text { A } 28 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 28 \text { V DC } \end{aligned}$	20 A 28V DC
	Max. carry current (Initial) (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)	20 A 28 V DC	$\begin{aligned} & \text { N.O.: } 20 \text { A } 28 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 28 \text { V DC } \end{aligned}$	20 A 28 V DC

${ }^{\text {*1 }}$ All other specifications are the same as those of standard type (12V coil voltage)
(3) Heat resistant type (12V, 24 V coil voltage)

Type		12V coil voltage			24 V coil voltage		
Arrangement		1 Form A	1 Form C	High contact capacity (1 Form A)	1 Form A	1 Form C	High contact capacity (1 Form A)
Rating	Nominal switching capacity	40 A 14V DC	N.O.: 40 A 14 V DC N.C.: 30 A 14 V DC	40 A 14V DC	20 A 28 V DC	N.O.: 20 A 28 V DC N.C.: 10 A 28 V DC	20 A 28 V DC
	Max. carry current (Initial) (at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)^{*}$	50 A 14 V DC	N.O.: 50 A 14 V DC N.C.: 30 A 14 V DC	$\begin{aligned} & 45 \mathrm{~A} 14 \mathrm{~V} \text { DC } \\ & 50 \mathrm{~A} 14 \mathrm{~V} C^{* 2} \end{aligned}$	25 A 28V DC	$\begin{aligned} & \text { N.O.: } 25 \text { A } 28 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 28 \text { V DC } \end{aligned}$	25 A 28V DC

${ }^{*}$ All other specifications are the same as those of standard type (12 V coil voltage)
${ }^{*}$ PC board type

* Current value in which carry current is possible when the coil temperature is $180^{\circ} \mathrm{C} 356^{\circ} \mathrm{F}$.

Coil

Arrangement	Coil voltage	Nominal operating power
1 Form A,	12 V DC	1.4 W
1 Form C	24 V DC	1.8 W
High contact capacity	12 V DC	1.8 W (1.4W: PC board type)
1 Form A)	24 V DC	1.8 W (1.4W: PC board type)

Characteristics

Max. operating speed (at rated load)			15 cpm
Initial insulation resistance*2			Min. $20 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*3	Between open contacts		500 Vrms for 1 min .
	Between contacts and coil		500 Vrms for 1 min.
Operate time*4 (at nominal voltage)			Max. 15 ms (Initial)
Release time (without diode)*4 (at nominal voltage)			Max. 15 ms (Initial)
Shock resistance		Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive	Min. 1,000 m/s² $\left.{ }^{\text {a }} 100 \mathrm{G}\right\}$
Vibration resistance		Functional	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		Functional*5	10 Hz to $2,000 \mathrm{~Hz}$, Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\}
Conditions for operation, transport and storage*6 (Not freezing and condensing at low temperature)		Ambient temp.	$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F}$ (Heat resistant type: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$)
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 33 g 1.16 oz

Remarks
${ }^{*}{ }^{*}$ At nominal switching capacity, operating frequency: 2 s ON, 2 s OFF
${ }^{*} 5$ Time of vibration for each direction; X, Y, Z direction: 4 hours
${ }^{*}$ Measurement at same location as "Initial breakdown voltage" section
${ }^{*} 3$ Detection current: 10 mA
${ }^{*} 4$ Excluding contact bounce time

TYPICAL APPLICATIONS

- Head lights
- Starters
- ABS
- Head Lamp
- Air conditioner
- Tracter, Combine

ORDERING INFORMATION

Note: Bulk pakage: 50 pcs.; Case: 200 pcs.

TYPES

1. Standard type

Contact arrangement	Mounting classification	Coil voltage, V DC	Part No.	
			Sealed type	Flux-resistant type
1 Form A	PC board type	12V	CB1a-P-12V	CB1aF-P-12V
		24 V	CB1a-P-24V	CB1aF-P-24V
	Plug-in type	12 V	CB1a-12V	CB1aF-12V
		24V	CB1a-24V	CB1aF-24V
	Bracket type	12 V	CB1a-M-12V	CB1aF-M-12V
		24 V	CB1a-M-24V	CB1aF-M-24V
1 Form C	PC board type	12 V	CB1-P-12V	CB1F-P-12V
		24 V	CB1-P-24V	CB1F-P-24V
	Plug-in type	12 V	CB1-12V	CB1F-12V
		24 V	CB1-24V	CB1F-24V
	Bracket type	12 V	CB1-M-12V	CB1F-M-12V
		24 V	CB1-M-24V	CB1F-M-24V
High contact capacity (1 Form A)	PC board type*	12 V	CB1aH-P-12V	CB1aHF-P-12V
		24 V	CB1aH-P-24V	CB1aHF-P-24V
	Plug-in type	12 V	CB1aH-12V	CB1aHF-12V
		24 V	CB1aH-24V	CB1aHF-24V
	Bracket type	12 V	CB1aH-M-12V	CB1aHF-M-12V
		24 V	CB1aH-M-24V	CB1aHF-M-24V

[^0]2. Heat resistant type

Contact arrangement	Mounting classification	Coil voltage, V DC	Part No.	
			Sealed type	Flux-resistant type
1 Form A	PC board type	12 V	CB1a-T-P-12V	CB1aF-T-P-12V
		24V	CB1a-T-P-24V	CB1aF-T-P-24V
	Plug-in type	12 V	CB1a-T-12V	CB1aF-T-12V
		24V	CB1a-T-24V	CB1aF-T-24V
	Bracket type	12 V	CB1a-T-M-12V	CB1aF-T-M-12V
		24 V	CB1a-T-M-24V	CB1aF-T-M-24V
1 Form C	PC board type	12 V	CB1-T-P-12V	CB1F-T-P-12V
		24V	CB1-T-P-24V	CB1F-T-P-24V
	Plug-in type	12 V	CB1-T-12V	CB1F-T-12V
		24 V	CB1-T-24V	CB1F-T-24V
	Bracket type	12 V	CB1-T-M-12V	CB1F-T-M-12V
		24 V	CB1-T-M-24V	CB1F-T-M-24V
High contact capacity (1 Form A)	PC board type*	12 V	CB1aH-T-P-12V	CB1aHF-T-P-12V
		24V	CB1aH-T-P-24V	CB1aHF-T-P-24V
	Plug-in type	12 V	CB1aH-T-12V	CB1aHF-T-12V
		24 V	CB1aH-T-24V	CB1aHF-T-24V
	Bracket type	12 V	CB1aH-T-M-12V	CB1aHF-T-M-12V
		24 V	CB1aH-T-M-24V	CB1aHF-T-M-24V

* Regarding solder, this product is not MIL (Military Standard) compliant. Please evaluate solder mounting by the actual equipment before using.

COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Nominal voltage, V DC	Pick-up voltage, V DC*	Drop-out voltage, V DC	Nominal current, mA	Coil resistance, Ω	Nominal operating power, W	Usable voltage range, V DC
1 Form A 1 Form C	12	Max. 3 to 7	Min. 1.2 to 4.2	117 $\pm 10 \%$	103 $\pm 10 \%$	1.4	10 to 16
	24	Max. 6 to 14	Min. 2.4 to 8.4	$75 \pm 10 \%$	320 $\pm 10 \%$	1.8	20 to 32
High contact capacity (1 Form A)	12	Max. 3 to 7	Min. 1.2 to 4.2	117 $\pm 10 \%$	103 $\pm 10 \%$	1.4 (PC board type)	10 to 16
				150 $\pm 10 \%$	80 $\pm 10 \%$	1.8	
	24	Max. 6 to 14	Min. 2.4 to 8.4	$58 \pm 10 \%$	$411 \pm 10 \%$	1.4 (PC board type)	20 to 32
				$75 \pm 10 \%$	$320 \pm 10 \%$	1.8	

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS

1. PC board type

Schematic (Bottom view)

1a

PC board pattern

Dimension:
General tolerance
Max. 1mm . 039 inch: $\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

2. Plug-in type

Dimension:
Max. 1mm . 039 inch:
$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

3. Bracket type

Schematic (Bottom view)

Schematic (Bottom view)

Dimension:
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

4. High contact capacity type (Plug-in terminal type)

Schematic (Bottom view)

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm . 030 to 118 inc
Min. 3mm 118 inch.

Schematic (Bottom view)

PC board pattern

General tolerance
Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

* Intervals between terminals is measured at A surface level.

REFERENCE DATA

CB RELAYS Standard type (Heat resistant type)

1. Ambient temperature and current value in which carry current is possible
*Precondition: Initial

Asssumption:

- Maximum mean coil temperature $=180^{\circ} \mathrm{C}$
- Curves are based on 1.4W (Nominal power consumption of the unsupprressed coil at nominal voltage)

4. Distribution of pick-up and drop-out voltage Sample: CB1-P-12V, 42pcs.

5. Max. switching capability (Resistive load) (Standard type)

6. Ambient temperature and operating temperature range
(Standard type)

7. Distribution of operate and release time Sample: CB1-P-24V, 42pcs.

* Without diode

6-(1). Electrical life test (Motor free)
Sample: CB1F-12V, 5pcs.
Load: 25A 14V DC, motor free actual load
Switching frequency: (ON:OFF = 1s:9s)
Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 80A, Steady current: 25A,

6-(2). Electrical life test (Lamp load)
Sample: CB1F-12V, 5pcs.
Load: 45/65Wx5 parallel, 14V DC, halogen lamp actual load
Switching frequency: (ON:OFF = 1s:8s)
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform

Inrush current: 100A, Steady current: 20A,

Change of pick-up and drop-out voltage

Change of contact resistance

CB RELAYS High capacity type (Heat resistant type)

1. Ambient temperature and current value in which carry current is possible
*Precondition: Initial

Asssumption:
Maximum mean coil temperature $=180^{\circ} \mathrm{C}$

- Curves are based on 1.4 W (Nominal power consumption of the unsupprressed coil at nominal voltage)

4. Distribution of pick-up and drop-out voltage Sample: CB1aHF-12V, 53pcs.

6-(1). Electrical life test (Motor free) Sample: CB1aH-12V, 3pcs.
Load: Inrush current: 64A/Steady current: 35A
Fan motor actual load (motor free) 12V DC
Switching frequency: (ON:OFF = 3s:7s)
Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 64A, Steady current: 35A,

2. Max. switching capability
(High capacity type)

5. Distribution of operate and release time Sample: CB1aHF-12V, 53pcs.

Change of pick-up and drop-out voltage

3. Ambient temperature and operating temperature range (Heat resistant type)

6. Contact resistance

Sample: CB1aHF-12V, 53pcs.
(By voltage drop 6V DC 1A)

Change of contact resistance

6-(2). Electrical life test (Motor lock)
Sample: CB1aH-12V, 5pcs.
Load: 100A 14V DC
Magnet clutch actual load (lock condition)
Switching frequency: (ON:OFF = 1s:9s)
Ambient temperature: Room temperature
Circuit

Load current waveform
100A 14V DC

Change of contact resistance

Cautions regarding the protection element

1. Part numbers without protection elements

1) 12 V models

When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 24 V or higher, or a resistor (680Ω to $1,000 \Omega$). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.
2) 24 V models

When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 48 V or higher, or a resistor $(2,800 \Omega$ to $4,700 \Omega$).
When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.

2. Part numbers with diodes

These relays use a diode in the coil surge protection element. Therefore, the release time is slower and the working life might be shorter compared to part numbers without protection elements and part numbers with resistors.
Be sure to use only after evaluating under actual load conditions.

3. Part numbers with resistors

This part number employs a resistor in the coil surge protection circuit; therefore, an external surge protection element is not required. In particular, when a diode is connected in parallel with a coil, the revert time becomes slower which could adversely affect working life. Please check the circuit and make sure that a diode is not connected in parallel with the coil drive circuit.

For Cautions for Use, see Relay Technical Information.

[^0]: * Regarding solder, this product is not MIL (Military Standard) compliant. Please evaluate solder mounting by the actual equipment before using.

